Закон Харди-Вайнберга

Закон Харди-Вайнберга сформулировали в 1908 г. Независимо друг от друга математик Г. Харди в Англии и врач В. Вайнберг в Германии. Закон Харди-Вайнберга гласит, что процесс наследственной преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов.

Равновесные частоты генотипов задаются произведениями частот соответствующих аллелей. Если имеются только два аллеля, А и а, с частотами p и q, то частоты трех возможных генотипов выражаются уравнением:

(р + g)2 = р2 + 2рg + g2

А а АА Аа аа,

где буквам во второй строке, обозначающем аллели и генотипы, соответствуют расположенные над ними частоты в первой строке; в котором:

· р – частота встречаемости аллеля А;

· g – частота встречаемости аллеля а;

· g2 – частота встречаемости генотипа аа;

· р2 – частота встречаемости генотипа АА;

· рg – частота встречаемости генотипа Аа. [1,с.111-112]

Таким образом, если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простым уравнением квадрата суммы. Приведенная выше формула получила название уравнения Харди–Вайнберга.

Предположим, что в популяции р = 0,7А, g = 0,3а, тогда частоты встречаемости генотипов будут равны (0,7 + 0,3)2 = 0,49 + 0,42 + 0,09 = 1.

Интересно, что в следующем поколении гаметы с аллелем А будут вновь возникать с частотой 0,7 (0,49 от АА + 0,21 от Аа), а с аллелем а – с частотой 0,3 (0,09 от аа + 0,21 от Аа), т.е. частоты генов и генотипов остаются неизменными из поколения в поколение – это и есть закон Харди–Вайнберга. [1] Если имеются три аллеля, например, А1, А2 и А3, с частотами p, q и r, то частоты генотипов определяются следующим образом:

(р + q + r)2 = р2 + q2 + r2 + 2рq + 2pr + 2qr

A1 A2 А3 А1А1 А2А2 А3А3 А1А2 А1А3 А2А3.

Аналогичный прием возведения в квадрат многочлена может быть использован для определения равновесных частот генотипов при любом числе аллелей. Здесь можно отметить, что сумма всех частот аллелей, так же, как и сумма всех частот генотипов, всегда должна быть равна 1. Если имеются только два аллеля с частотами р и q, то р + q = 1, и, следовательно, (р + g)2 = р2 + 2рg + g2 = 1; если же имеются три аллеля с частотами p, q и r, то р + q + r = 1, и, следовательно, также (р + q + r)2 = 1 и т.д.

Чтобы понять смысл закона Харди-Вайнберга, можно привести простой пример. Предположим, что данный локус содержит один из двух аллелей, А и а, представленных с одинаковыми для самцов и самок частотами: р для А и q для а. Представим себе, что самцы и самки скрещиваются случайным образом, или, что то же самое, гаметы самцов и самок образуют зиготы, встречаясь случайно. Тогда частота любого генотипа будет равна произведению частот соответствующих аллелей.

Вероятность того, что некоторая определенная особь обладает генотипом АА, равна вероятности (р) получить аллель А от матери, умноженной на вероятность (р) получить аллель А от отца, то есть р умножить на р равняется р2 .

Совершенно аналогично вероятность того, что определенная особь обладает генотипом аа, равна g2 . Генотип Аа может возникнуть двумя путями: организм получает аллель А от матери и а от отца, или, наоборот, аллель А от отца и аллель а от матери. Вероятность того и другого события равна рg, а значит суммарная вероятность возникновения Аа равна 2рg.


Что такое гипноз и самогипноз?
Почти каждому не раз приходилось испытывать состояние, напоминающее транс, хотя человек вряд ли подозревал, что это гипноз. Вспомните, как иногда, уйдя в свои мысли, вы теряли ощущение реальности; как, увлеченные содержанием книги или обдумывая интересный план, не слышали обращенных к вам слов и не замечали пролетевших часов. Разница м ...

Особенности личности подростков
2. Развитие самосознания ,формирование "Я-концепции" система внутренне согласованных представлений о себе, образов "Я". 4. Критичность мышления, склонность к рефлексии, формирование самоанализа. 5. Трудности роста, половое созревание, сексуальные переживания, интерес к противоположному полу. 6. Повышенная возбудим ...

Какую роль играет фантазия в жизни невротика?
Когда больной приводит материал, который ведет от симптомов к ситуациям желания, построенным по образцу детских переживаний, мы сначала, правда, сомневаемся, идет ли речь о действительности или о фантазии. Если мы с самого начала открываем ему, что теперь он собирается показать фантазии, которыми окутал свою историю детства, то мы замеч ...